Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 827
Filtrar
1.
Nat Commun ; 15(1): 3828, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714653

RESUMEN

Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures.

2.
Heliyon ; 10(8): e30123, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38699735

RESUMEN

Background: Tumor genetic anomalies and immune dysregulation are pivotal in the progression of multiple myeloma (MM). Accurate patient stratification is essential for effective MM management, yet current models fail to comprehensively incorporate both molecular and immune profiles. Methods: We examined 776 samples from the MMRF CoMMpass database, employing univariate regression with LASSO and CIBERSORT algorithms to identify 15 p53-related genes and six immune cells with prognostic significance in MM. A p53-TIC (tumor-infiltrating immune cells) classifier was constructed by calculating scores using the bootstrap-multicox method, which was further validated externally (GSE136337) and through ten-fold internal cross-validation for its predictive reliability and robustness. Results: The p53-TIC classifier demonstrated excellent performance in predicting the prognosis in MM. Specifically, patients in the p53low/TIChigh subgroup had the most favorable prognosis and the lowest tumor mutational burden (TMB). Conversely, those in the p53high/TIClow subgroup, with the least favorable prognosis and the highest TMB, were predicted to have the best anti-PD1 and anti-CTLA4 response rate (40 %), which can be explained by their higher expression of PD1 and CTLA4. The three-year area under the curve (AUC) was 0.80 in the total sample. Conclusions: Our study highlights the potential of an integrated analysis of p53-associated genes and TIC in predicting prognosis and aiding clinical decision-making in MM patients. This finding underscores the significance of comprehending the intricate interplay between genetic abnormalities and immune dysfunction in MM. Further research into this area may lead to the development of more effective treatment strategies.

3.
Anal Methods ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738477

RESUMEN

To detect redox potential evolution during the initial stage of an acute wound, a redox-sensitive SERS-active optical fiber was fabricated by integrating redox-sensitive SERS probes in a hole of an optical fiber. The redox-sensitive SERS-active optical fibers carried redox-sensitive SERS probes into the inside of a wound to sense its redox potential. The laser was transmitted to the redox-sensitive SERS probes in the body by optical fibers, and the SERS signals of the redox-sensitive SERS probes were transferred out of the body by optical fibers to indicate the redox potentials in the wound. The redox-sensitive SERS probes dynamically sensed the redox potential in vivo, and their SERS signals were collected constantly to indicate the redox potentials. The assessments in vivo and in vitro proved the responsiveness of redox-sensitive SERS-active optical fibers. The redox potential evolution during the initial stage of an acute wound with the treatments of different concentrations of glucose was detected to verify the feasibility of redox-sensitive SERS-active optical fibers to dynamically detect redox potentials in vivo. The redox-sensitive SERS-active optical fiber would be a versatile tool to explore the roles of redox potentials in living organisms.

4.
Cell Mol Biol Lett ; 29(1): 70, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741147

RESUMEN

BACKGROUND: Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) is a peptide antigen released from the mycobacterial cytoplasm into the supernatant of Mycobacterium tuberculosis (Mtb) attenuated H37Ra strain after autoclaving at 121 °C for 20 min. Mtb-HAg can specifically induce γδ T-cell proliferation in vitro. However, the exact composition of Mtb-HAg and the protein antigens that are responsible for its function are currently unknown. METHODS: Mtb-HAg extracted from the Mtb H37Ra strain was subjected to LC‒MS mass spectrometry. Twelve of the identified protein fractions were recombinantly expressed in Escherichia coli by genetic engineering technology using pET-28a as a plasmid and purified by Ni-NTA agarose resin to stimulate peripheral blood mononuclear cells (PBMCs) from different healthy individuals. The proliferation of γδ T cells and major γδ T-cell subset types as well as the production of TNF-α and IFN-γ were determined by flow cytometry. Their proliferating γδ T cells were isolated and purified using MACS separation columns, and Mtb H37Ra-infected THP-1 was co-cultured with isolated and purified γδ T cells to quantify Mycobacterium viability by counting CFUs. RESULTS: In this study, Mtb-HAg from the attenuated Mtb H37Ra strain was analysed by LC‒MS mass spectrometry, and a total of 564 proteins were identified. Analysis of the identified protein fractions revealed that the major protein components included heat shock proteins and Mtb-specific antigenic proteins. Recombinant expression of 10 of these proteins in by Escherichia coli genetic engineering technology was used to successfully stimulate PBMCs from different healthy individuals, but 2 of the proteins, EsxJ and EsxA, were not expressed. Flow cytometry results showed that, compared with the IL-2 control, HspX, GroEL1, and GroES specifically induced γδ T-cell expansion, with Vγ2δ2 T cells as the main subset, and the secretion of the antimicrobial cytokines TNF-α and IFN-γ. In contrast, HtpG, DnaK, GroEL2, HbhA, Mpt63, EsxB, and EsxN were unable to promote γδ T-cell proliferation and the secretion of TNF-α and IFN-γ. None of the above recombinant proteins were able to induce the secretion of TNF-α and IFN-γ by αß T cells. In addition, TNF-α, IFN-γ-producing γδ T cells inhibit the growth of intracellular Mtb. CONCLUSION: Activated γδ T cells induced by Mtb-HAg components HspX, GroES, GroEL1 to produce TNF-α, IFN-γ modulate macrophages to inhibit intracellular Mtb growth. These data lay the foundation for subsequent studies on the mechanism by which Mtb-HAg induces γδ T-cell proliferation in vitro, as well as the development of preventive and therapeutic vaccines and rapid diagnostic reagents.


Asunto(s)
Antígenos Bacterianos , Proliferación Celular , Mycobacterium tuberculosis , Linfocitos T , Humanos , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Interferón gamma/metabolismo , Interferón gamma/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Factor de Necrosis Tumoral alfa/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología
5.
Med ; 5(5): 401-413.e4, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38574739

RESUMEN

BACKGROUND: The recently circulating Omicron variants BA.2.86 and JN.1 were identified with more than 30 amino acid changes on the spike protein compared to BA.2 or XBB.1.5. This study aimed to comprehensively assess the immune escape potential of BA.2.86, JN.1, EG.5, and EG.5.1. METHODS: We collected human and murine sera to evaluate serological neutralization activities. The participants received three doses of coronavirus disease 2019 (COVID-19) vaccines or a booster dose of the ZF2022-A vaccine (Delta-BA.5 receptor-binding domain [RBD]-heterodimer immunogen) or experienced a breakthrough infection (BTI). The ZF2202-A vaccine is under clinical trial study (ClinicalTrials.gov: NCT05850507). BALB/c mice were vaccinated with a panel of severe acute respiratory syndrome coronavirus 2 RBD-dimer proteins. The antibody evasion properties of these variants were analyzed with 41 representative human monoclonal antibodies targeting the eight RBD epitopes. FINDINGS: We found that BA.2.86 had less neutralization evasion than EG.5 and EG.5.1 in humans. The ZF2202-A booster induced significantly higher neutralizing titers than BTI. Furthermore, BA.2.86 and JN.1 exhibited stronger antibody evasion than EG.5 and EG.5.1 on RBD-4 and RBD-5 epitopes. Compared to BA.2.86, JN.1 further lost the ability to bind to several RBD-1 monoclonal antibodies and displayed further immune escape. CONCLUSIONS: Our data showed that the currently dominating sub-variant, JN.1, showed increased immune evasion compared to BA.2.86 and EG.5.1, which is highly concerning. This study provides a timely risk assessment of the interested sub-variants and the basis for updating COVID-19 vaccines. FUNDING: This work was funded by the National Key R&D Program of China, the National Natural Science Foundation of China, the Beijing Life Science Academy, the Bill & Melinda Gates Foundation, and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (CPSF).


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , COVID-19 , Ratones Endogámicos BALB C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Humanos , Animales , Anticuerpos Monoclonales/inmunología , SARS-CoV-2/inmunología , Ratones , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , COVID-19/prevención & control , COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Femenino , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Masculino , Sueros Inmunes/inmunología , Adulto , Evasión Inmune , Pruebas de Neutralización , Epítopos/inmunología
6.
Molecules ; 29(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611741

RESUMEN

We reported a highly efficient electrochemical immunosensor utilizing chitosan-graphene nanosheets (CS-GNs) nanocomposites for the detection of aflatoxin B1 (AFB1) in corn samples. The CS-GNs nanocomposites, serving as a modifying layer, provide a significant specific surface area and biocompatibility, thereby enhancing both the electron transfer rate and the efficiency of antibody immobilization. The electrochemical characterization was conducted utilizing both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Moreover, the antibody concentration, pH, antibody immobilization time, and immunoreaction time, were optimized. The results showed that the current change (ΔI) before and after the immunoreaction demonstrated a strong linear relationship (R2=0.990) with the AFB1 concentration, as well as good specificity and stability. The linear range extended from 0.05 to 25 ng/mL, with a detection limit of 0.021 ng/mL (S/N=3). The immunosensor exhibited a recovery rate ranging from 97.3% to 101.4% in corn samples, showing a promising performance using an efficient method, and indicating a remarkable prospect for the detection of fungal toxins in grains.


Asunto(s)
Técnicas Biosensibles , Quitosano , Grafito , Zea mays , Aflatoxina B1 , Inmunoensayo , Anticuerpos
7.
ACS Appl Mater Interfaces ; 16(15): 19442-19452, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563482

RESUMEN

Porous polymers have many industrial applications, but their pore structures (open or closed) are usually fixed during polymerization. In this study, polymers with reversible and controllable pore structures, namely, thermosensitive porous hydrogels with regulated volume phase transition temperature, were prepared using a Pickering high-internal-phase emulsion as the template. Upon heating, the hydrogels transformed not only in their wettability (between hydrophilicity and hydrophobicity with water contact angles of 21.8 and 100.9°) but also their pore structure (between open through-holes and closed holes with pore throat sizes of 15.58 and 0 µm, respectively) in a short time (<10 s). When the hydrogel was used as a separator in smart supercapacitors (SCs), this behavior effectively limited the path of electrolyte migration, reducing the chance of conflagration accidents. Moreover, by utilizing the highly reversible pore structures and wettability of the porous hydrogel, reversible charging and discharging were restored after the system cooled down. This work not only provides great guidance for preparing porous polymers with reversible pore structures but also paves the way for designing smart SCs with enhanced safety.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38627247

RESUMEN

OBJECTIVES: Preoperative diagnosis of oral ameloblastoma (AME) and odontogenic keratocyst (OKC) has been a challenge in dentistry. This study uses radiomics approaches and machine learning (ML) algorithms to characterize cone beam computed tomography (CBCT) image features for the preoperative differential diagnosis of AME and OKC and compares ML algorithms to expert radiologists to validate performance. METHODS: We retrospectively collected the data of 326 patients with AME and OKC, where all diagnoses were confirmed by histopathologic tests. A total of 348 features were selected to train six ML models for differential diagnosis by a five-fold cross-validation. We then compared the performance of ML-based diagnoses to those of radiologists. RESULTS: Among the six ML models, XGBoost was effective in distinguishing AME and OKC in CBCT images, with its classification performance outperforming the other models. The mean precision, recall, accuracy, F1-score, and area under the curve (AUC) were 0.900, 0.807, 0.843, 0.841, and 0.872, respectively. Compared to the diagnostics by radiologists, ML-based radiomic diagnostics performed better. CONCLUSIONS: Radiomic-based ML algorithms allow CBCT images of AME and OKC to be distinguished accurately, facilitating the preoperative differential diagnosis of AME and OKC. ADVANCES IN KNOWLEDGE: ML and radiomic approaches with high-resolution CBCT images provide new insights into the differential diagnosis of AME and OKC.

9.
Phys Rev Lett ; 132(12): 123802, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579232

RESUMEN

Ring resonators play a crucial role in optical communication and quantum technology applications. However, these devices lack a simple and intuitive theoretical model to describe their electro-optical modulation. When the resonance frequency is rapidly modulated, the filtering and modulation within a ring resonator become physically intertwined, making it difficult to analyze the complex physical processes involved. We address this by proposing an analytical solution for electro-optic ring modulators based on the concept of a "virtual state." This approach equates a lightwave passing through a dynamic ring modulator to one excited to a virtual state by a cumulative phase and then returning to the real state after exiting the static ring. Our model simplifies the independent analysis of the intertwined physical processes, enhancing its versatility in analyzing various incident signals and modulation formats. Experimental results, including resonant and detuning modulation, align with the numerical simulation of our model. Notably, our findings indicate that the dynamic modulation of the ring resonator under detuning driving approximates phase modulation.

10.
Opt Express ; 32(7): 11281-11295, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570979

RESUMEN

We report a dual-polarization radio frequency (RF) channelizer based on microcombs. Two high-Q micro-ring resonators (MRRs) with slightly different free spectral ranges (FSRs) are used: one MRR is pumped to yield soliton crystal microcombs ("active"), and the other MRR is used as a "passive" periodic optical filter supporting dual-polarization operation to slice the RF spectrum. With the tailored mismatch between the FSRs of the active and passive MRRs, wideband RF spectra can be channelized into multiple segments featuring digital-compatible bandwidths via the Vernier effect. Due to the use of dual-polarization states, the number of channelized spectral segments, and thus the RF instantaneous bandwidth (with a certain spectral resolution), can be doubled. In our experiments, we used 20 microcomb lines with ∼ 49 GHz FSR to achieve 20 channels for each polarization, with high RF spectra slicing resolutions at 144 MHz (TE) and 163 MHz (TM), respectively; achieving an instantaneous RF operation bandwidth of 3.1 GHz (TE) and 2.2 GHz (TM). Our approach paves the path towards monolithically integrated photonic RF receivers (the key components - active and passive MRRs are all fabricated on the same platform) with reduced complexity, size, and unprecedented performance, which is important for wide RF applications with digital-compatible signal detection.

11.
Mikrochim Acta ; 191(5): 246, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38580781

RESUMEN

Heavy metal pollution has attracted global attention because of its high toxicity, non-biodegradability, and carcinogenicity. Electrochemical sensors are extensively employed for the detection of low concentrations of heavy metal ions (HMIs). However, their applicability is often limited to the detection of ions that exhibit electrochemical signals exclusively in aqueous solutions. In this study, we proposed a multi-responsive detection platform based on the modification of horseradish peroxidase@zeolitic imidazolate frameworks-8/thionine/gold/ionic liquid-reduced graphene oxide (HRP@ZIF-8/THI/Au/IL-rGO). This platform demonstrated its capability to detect various metal ions, including those without conventional electrochemical signals. The Au/IL-rGO composite structure enhanced the specific surface area available for the reaction. Furthermore, the in situ growth of HRP@ZIF-8 not only shielded the THI signal prior to detection but also protected the electrode material. It was important to note that the introduced edetate disodium dihydrate (EDTA) had the ability to complex with various HMIs. When excess EDTA was present, it could cleave ZIF-8 and release HRP. In the presence of hydrogen peroxide (H2O2), HRP promoted the oxidation of THI previously reduced by the electrode and thus showed excellent sensitivity for HMIs detection. The proposed method overcame the limitation of traditional electrochemical sensors, which solely relied on electrochemical signals for detecting metal ions. This offers a novel approach to enhance electrochemical ion sensing detection.

12.
Environ Pollut ; 348: 123813, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537801

RESUMEN

The removal of trace amounts of antibiotics from water environments while simultaneously avoiding potential environmental hazards during the treatment is still a challenge. In this work, green, harmless, and novel asymmetric mesoporous TiO2 (A-mTiO2) was combined with peroxodisulfate (PDS) as active components in a controlled-release material (CRM) system for the degradation of tetracycline (TC) in the dark. The formation of reactive oxygen species (ROS) and the degradation pathways of TC during catalytic PDS activation by A-mTiO2 powder catalysts and the CRMs were thoroughly studied. Due to its asymmetric mesoporous structure, there were abundant Ti3+/Ti4+ couples and oxygen vacancies in A-mTiO2, resulting in excellent activity in the activation of PDS for TC degradation, with a mineralization rate of 78.6%. In CRMs, ROS could first form during PDS activation by A-mTiO2 and subsequently dissolve from the CRMs to degrade TC in groundwater. Due to the excellent performance and good stability of A-mTiO2, the resulting constructed CRMs could effectively degrade TC in simulated groundwater over a long period (more than 20 days). From electron paramagnetic resonance analysis and TC degradation experiments, it was interesting to find that the ROS formed during PDS activation by A-mTiO2 powder catalysts and CRMs were different, but the degradation pathways for TC were indeed similar in the two systems. In PDS activation by A-mTiO2, besides the free hydroxyl radical (·OH), singlet oxygen (1O2) worked as a major ROS participating in TC degradation. For CRMs, the immobilization of A-mTiO2 inside CRMs made it difficult to capture superoxide radicals (·O2-), and continuously generate 1O2. In addition, the formation of sulfate radicals (·SO4-), and ·OH during the release process of CRMs was consistent with PDS activation by the A-mTiO2 powder catalyst. The eco-friendly CRMs had a promising potential for practical application in the remediation of organic pollutants from groundwater.


Asunto(s)
Antibacterianos , Tetraciclina , Especies Reactivas de Oxígeno , Preparaciones de Acción Retardada , Polvos , Antibacterianos/química , Tetraciclina/química
13.
Opt Express ; 32(4): 6423-6431, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439345

RESUMEN

Intracavity optical metasurfaces with compact and flexible light manipulation capabilities, effectively enrich the implementation of miniaturized and user-friendly orbital angular momentum (OAM) laser sources. Here we demonstrate a wavelength-tunable figure-9 Yb-doped vortex fiber laser solely with standard non-polarization-maintaining single-mode fibers, which utilizes a gap-surface plasmon (GSP) metasurface as the intracavity mode regulation component to generate OAM beams, extending the avenues and related applications for cost-effective OAM laser sources. Gained by the broadband operation range of the metasurface, the figure-9 fiber laser could emit OAM light with center wavelength tunable from 1020 nm to 1060 nm and of high mode purity (about 90%). OAM beams with different topological charges such as l = ±1 have been obtained by changing the metasurface design. The proposed fiber laser with the intracavity GSP metasurface provides a reliable and customized output of OAM beams at the laser source, holding great promise for a wide range of applications in optical communications, sensing, and super-resolution imaging.

14.
Opt Express ; 32(5): 6977-6985, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439390

RESUMEN

A regeneratively mode-locked erbium fiber laser was numerically investigated and experimentally demonstrated, which was able to generate a 583 fs pulse train at 10 GHz via intracavity pulse compression with nonlinear polarization evolution (NPE). To excite the NPE at such a high repetition rate, a dispersion map was intentionally introduced to obtain short pulses accompanied by high peaks through soliton-like pulse shaping. Numerical simulations indicated that steady-state oscillation with pulses below 1 ps can be successfully established using this laser configuration. Experimentally, we obtained a pulse duration of 583 fs and a 3 dB spectral width of 4.5 nm at an average output power of 15.6 mW. Simultaneously, supermode suppression of more than 80 dB was also obtained from the appropriate biased NPE.

15.
Nanotechnology ; 35(23)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38417173

RESUMEN

Graphene and its derivatives are widely used in the field of energy conversion and management due to their excellent physical and chemical properties. In this paper, ultra-thin graphite film (GF) with thickness of 100-150 nm prepared by chemical vapor deposition was transferred to oxygen plasma-treated polyimide (PI) substrate as flexible heating film. The electrothermal and photothermal properties of GF on PI substrates with different treatment time were studied. The experimental results show that the PI substrate pretreated by oxygen plasma can change the surface morphology of GF, increase its electrical conductivity and light absorption capacity, and significantly improve the electrothermal and photothermal properties of GF heater. Under the low applied voltage of 5 V (power density of 0.81 W cm-2), the surface temperature of GF on 40 min plasma-treated PI substrate can rise to 250 °C, which is nearly 50 °C higher than that of GF on untreated PI substrate. When 100 nm thick commercial multilayer graphene film (MLG) is used, plasma-treated PI substrate can increase the electric heating temperature of MLG by 70 °C. In terms of photothermal performance, the surface temperature of GF on 50 min plasma-treated PI substrate can reach 73 °C under one Sun irradiation, which is 8 °C higher than that on untreated substrate. The experimental results are in good agreement with the simulation research. Our strategy has important implications for the development of efficient and energy-saving graphene/graphite-based heating films for advanced electrothermal and photothermal conversion devices.

16.
Sci Total Environ ; 922: 170584, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38309355

RESUMEN

Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.


Asunto(s)
Hepatopatías , Nanopartículas , Humanos , Animales , Ratones , Dióxido de Silicio/toxicidad , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Nanopartículas/toxicidad
17.
Inorg Chem ; 63(9): 4328-4336, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38367216

RESUMEN

The study of structural reconstruction is vital for the understanding of the real active sites in heterogeneous catalysis and guiding the improved catalyst design. Herein, we applied a copper nitride precatalyst in the nitroarene reductive coupling reaction and made a systematic investigation on the dynamic structural evolution behaviors and catalytic performance. This Cu3N precatalyst undergoes a rapid phase transition to nanostructured Cu with rich defective sites, which act as the actual catalytic sites for the coupling process. The nitride-derived defective Cu is very active and selective for azo formation, with 99.6% conversion of nitrobenzene and 97.1% selectivity to azobenzene obtained under mild reaction conditions. Density functional theory calculations suggest that the defective Cu sites play a role for the preferential adsorption of nitrosobenzene intermediates and significantly lowered the activation energy of the key coupling step. This work not only proposes a highly efficient noble-metal-free catalyst for nitroarenes coupling to valuable azo products but also may inspire more scientific interest in the study of the dynamic evolution of metal nitrides in different catalytic reactions.

18.
J Colloid Interface Sci ; 661: 501-511, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308890

RESUMEN

Metal-organic framework materials (MOFs) and their derivatives have been widely used in the field of photocatalytic water decomposition for hydrogen production. In this study, NiS/CdS was initially acquired and subsequently combined with DUT-67 via ultrasound to create a unique ternary photocatalyst NiS/CdS@DUT-67. The rate of hydrogen production for NiS/CdS@DUT-67 is 9618 µmol·g NiS/CdS-1·h-1 for NiS/CdS@DUT-67, which is 32 times and 2.5 times higher than that for CdS and NiS/CdS, respectively. Of particular interest is the fact that even after 50 h of photocatalysis, the hydrogen production rate did not show a significant decrease, demonstrating its excellent stability compared to CdS and NiS/CdS. In this ternary system, NiS and DUT-67 function as dual co-catalysts for CdS, collaborating to enhance charge separation during the photocatalysis. This study presents a clear demonstration of the advantages of utilizing metal-organic framework derivatives (MOF-derivatives) cophotocatalysts and their synergistic effect, resulting in improved photocatalytic activity and stability of semiconductors. This innovative approach provides a new perspective on constructing photocatalytic materials with exceptional performance.

19.
Anal Chem ; 96(10): 4067-4075, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38419337

RESUMEN

In this work, an electrochemiluminescence (ECL) quenching system using multimetal-organic frameworks (MMOFs) was proposed for the sensitive and specific detection of heart-type fatty acid-binding protein (H-FABP), a marker of acute myocardial infarction (AMI). Bimetallic MOFs containing Ru and Mn as metal centers were synthesized via a one-step hydrothermal method, yielding RuMn MOFs as the ECL emitter. The RuMn MOFs not only possessed the strong ECL performance of Ru(bpy)32+ but also maintained high porosity and original metal active sites characteristic of MOFs. Moreover, under the synergistic effect of MOFs and Ru(bpy)32+, RuMn MOFs have more efficient and stable ECL emission. The trimetal-based MOF (FePtRh MOF) was used as the ECL quencher because of the electron transfer between FePtRh MOFs and RuMn MOFs. In addition, active intramolecular electron transfer from Pt to Fe or Rh atoms also occurred in FePtRh MOFs, which could promote intermolecular electron transfer and improve electron transfer efficiency to enhance the quenching efficiency. The proposed ECL immunosensor demonstrated a wide dynamic range and a low detection limit of 0.01-100 ng mL-1 and 6.8 pg mL-1, respectively, under optimal conditions. The ECL quenching system also presented good specificity, stability, and reproducibility. Therefore, an alternative method for H-FABP detection in clinical diagnosis was provided by this study, highlighting the potential of MMOFs in advancing ECL technology.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Inmunoensayo/métodos , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados , Proteína 3 de Unión a Ácidos Grasos , Mediciones Luminiscentes/métodos , Metales , Técnicas Electroquímicas/métodos , Límite de Detección , Nanopartículas del Metal/química
20.
J Exp Bot ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421062

RESUMEN

The cultivated diploid Brassica oleracea is an important vegetable crop, but the genetic basis of domestication remains largely unclear without high-quality reference genomes of wild B. oleracea. Here, we report the first chromosome-level assembly of the wild Brassica oleracea L. W03 genome, (total genome size, 630.7 Mb; scaffold N50, 64.6 Mb). Using newly assembled W03 genome, we constructed a gene-based B. oleracea pangenome and identified 29,744 core genes, 23,306 dispensable genes, and 1,896 private genes. We resequenced 53 accessions, which represent six potential wild B. oleracea progenitor species. The results of the population genomic analysis showed that wild B. oleracea population had the highest level of diversity and represented the more closely related population of horticultural B. oleracea. Additionally, the WUSCHEL gene was found to play a decisive role in domestication and to be involved in cauliflower and broccoli curd formation. We also illustrate the loss of disease resistance genes during domestication selection. Our results provide deep insights into B. oleracea domestication and will facilitate Brassica crop genetic improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...